http://www2.manganese.org/news.php

http://metalsplace.com/news/manganese/

http://news.alibaba.com/article/list/1/manganese.html

http://manganeseinvestingnews.com/tag/manganese-market-news/

if u need more information about manganese in Timor Island  at Indoensia country

Please send us to midp.manganese@gmail.com

or you can write a message in our message area below

Many Thanks to you…

The first utilization of manganese can be traced back to the Stone Age. Men were already using manganese dioxide as a pigment for their cave paintings during the upper paleolithic period, 17.000 years ago. Later in Ancient Greece, the presence of manganese in the iron ore used by the Spartans is a likely explanation as to why their steel weapons were superior to those of their enemies. Manganese has also long been related to glass-making. The Egyptians and the Romans used manganese ore either to decolorize glass or to give it pink, purple and black tints. It has been continually used for this purpose until modern times.

In the mid-17th century, the German chemist Glauber obtained permanganate, the first usable manganese salt. Nearly a century later, manganese oxide became the basis for the manufacture of chlorine. Yet manganese was only recognized as an element in 1771, by the Swedish chemist Scheele. It was isolated in 1774 by one of his collaborators, J.G. Gahn. At the beginning of the 19th century, both British and French scientists began considering the use of manganese in steelmaking, with patents granted in the U.K. in 1799 and 1808. In 1816, a German researcher observed that manganese increased the hardness of iron, without reducing its malleability or toughness.

In 1826 Prieger in Germany produced a ferromanganese containing 80% manganese in a crucible. J.M. Heath produced metallic manganese in England in about 1840. The following year, Pourcel began industrial-scale production of “spiegeleisen”, a pig-iron containing a high percentage of manganese, and in 1875 he started the commercial production of ferromanganese with a 65% manganese content. The major breakthrough in the use of manganese occurred in 1860. At that time, Sir Henry Bessemer was trying to develop the steelmaking process which was to bear his name. But he experienced difficulty with an excess of residual oxygen and sulphur in the steel. The problems were overcome thanks to the beneficial effect of manganese, disclosed in a patent granted to Robert Mushet in 1856. Mushet suggested adding “spiegeleisen” after the blow to introduce both manganese and carbon and remove oxygen. This procedure made the Bessemer process possible, and thus paved the way for the modern steel industry. Ten years later, in 1866, Sir William Siemens patented the use of ferro-manganese in steelmaking so as to control the levels of phosphorus and sulphur.

Subsequently, and in contrast to all the early work involving manganese and steelmaking, Leclanché in 1868 developed the dry cell battery. This uses manganese dioxide as a depolariser in a simple yet effective dry cell and the battery market today is the second largest consumer of manganese. The history of manganese in the 20th century has been a stream of new processes and metallurgical/chemical applications developed with a significant impact on markets as diverse as beverage cans, agricultural pesticides and fungicides and electronic circuitry used in consumer products. Details of these applications are analysed later.

Source:
http://www2.manganese.org/history.php/

Manganese is a chemical element, designated by the symbol Mn. It has the atomic number 25. It is found as a free element in nature (often in combination with iron), and in many minerals. As a free element, manganese is a metal with important industrial metal alloy uses, particularly in stainless steels.
Manganese phosphating is used as a treatment for rust and corrosion prevention on steel. Depending on their oxidation state, manganese ions have various colors and are used industrially as pigments. The permanganates of alkali and alkaline earth metals are powerful oxidizers. Manganese dioxide is used as the cathode (electron acceptor) material in standard and alkaline disposable dry cells and batteries.
Manganese(II) ions function as cofactors for a number of enzymes in higher organisms, where they are essential in detoxification of superoxide free radicals. The element is a required trace mineral for all known living organisms. In larger amounts, and apparently with far greater activity by inhalation, manganese can cause a poisoning syndrome in mammals, with neurological damage which is sometimes irreversible.

Characteristics
Physical
Manganese is a silvery-gray metal resembling iron. It is hard and very brittle, difficult to fuse, but easy to oxidize. Manganese metal and its common ions are paramagnetic.

Isotopes
Main article: Isotopes of manganese
Naturally occurring manganese is composed of 1 stable isotope; 55Mn. 18 radioisotopes have been characterized with the most stable being 53Mn with a half-life of 3.7 million years, 54Mn with a half-life of 312.3 days, and 52Mn with a half-life of 5.591 days. All of the remaining radioactive isotopes have half-lives that are less than 3 hours and the majority of these have half-lives that are less than 1 minute. This element also has 3 meta states.

Manganese is part of the iron group of elements, which are thought to be synthesized in large stars shortly before the supernova explosion. 53Mn decays to 53Cr with a half-life of 3.7 million years. Because of its relatively short half-life, 53Mn occurs only in tiny amounts due to the action of cosmic rays on iron in rocks [4]. Manganese isotopic contents are typically combined with chromium isotopic contents and have found application in isotope geology and radiometric dating. Mn–Cr isotopic ratios reinforce the evidence from 26Al and 107Pd for the early history of the solar system. Variations in 53Cr/52Cr and Mn/Cr ratios from several meteorites indicate an initial 53Mn/55Mn ratio that suggests Mn–Cr isotopic composition must result from in–situ decay of 53Mn in differentiated planetary bodies. Hence 53Mn provides additional evidence for nucleosynthetic processes immediately before coalescence of the solar system.
The isotopes of manganese range in atomic weight from 46 u (46Mn) to 65 u (65Mn). The primary decay mode before the most abundant stable isotope, 55Mn, is electron capture and the primary mode after is beta decay.

The most common oxidation states of manganese are +2, +3, +4, +6 and +7, though oxidation states from -3 to +7 are observed. Mn2+ often competes with Mg2+ in biological systems. Manganese compounds where manganese is in oxidation state +7, which are restricted to the unstable oxide Mn2O7 and compounds of the intensely purple permanganate anion MnO4−, are powerful oxidizing agents.[1] Compounds with oxidation states +5 (blue) and +6 (green) are strong oxidizing agents and are vulnerable to disproportionation.
The most stable oxidation state for manganese is +2, which has a pink to red color, and many manganese(II) compounds are known, such as manganese(II) sulfate (MnSO4) and manganese(II) chloride (MnCl2). This oxidation state is also seen in the mineral rhodochrosite, (manganese(II) carbonate). The +2 oxidation state is the state used in living organisms for essential functions; other states are toxic for the human body.
The +3 oxidation state is known, in compounds such as manganese(III) acetate, but these are quite powerful oxidizing agents and also prone to disproportionation in solution to Mn(II) and Mn(IV). Solid compounds of Mn(III) are characterized by their preference for distorted octahedral coordination due to the Jahn-Teller effect and its strong purple-red color.
The oxidation state 5+ can be obtained if manganese dioxide is dissolved in molten sodium nitrite.[6] Manganate (VI) salts can also be produced by dissolving Mn compounds, such as manganese dioxide, in molten alkali while exposed to air.
Permanganate (+7 oxidation state) compounds are purple, and can give glass a violet color. Potassium permanganate, sodium permanganate and barium permanganate are all potent oxidizers. Potassium permanganate, also called Condy’s crystals, is a commonly used laboratory reagent because of its oxidizing properties and finds use as a topical medicine (for example, in the treatment of fish diseases). Solutions of potassium permanganate were among the first stains and fixatives to be used in the preparation of biological cells and tissues for electron microscopy.

Source:
http://en.wikipedia.org/wiki/Manganese

Mangan

Our company is engaged in mining, especially manganese which we have the ability to supply manganese from the mine site that has a perfect quality in the region of eastern Indonesia. Our company is able to serve more than 1000 bookings metric tons per month. Quality products that we support is the concentration of manganese with 40% or more and 50% and upwards. we have collaborated with the communities in eastern

Indonesia. We also provide cooperation in opening new investment in our location. Assurance in the process of delivery, availability of products in accordance res

ervations, in support facility work. We hope can cooperate well with you.


Regards,
PT. MIDP


June 2024
M T W T F S S
 12
3456789
10111213141516
17181920212223
24252627282930

Blog Statistic

  • 1,546 hits